AC810 1.2 GHZ OPTICAL NODE

AC810 is a dual active output node designed for FTTLA solutions.

The output amplifier stages are based on high performance 1.2 GHz GaN hybrids, which ensures highest possible signal quality and high output level. Interstage gain can be controlled in two positions, which results in wide operational dynamic range. The first stage is adjusted by OLC function. The second slot(s) can be controlled with plug-in attenuator and equaliser modules.

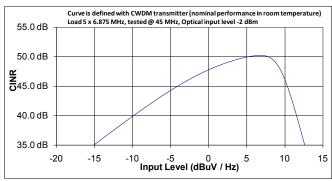
The integrated microcontroller takes care of OLC and monitors RF levels, laser bias current, temperature and supply voltages and transmits alarm data to the head end. Status leds for optical power and RF levels provide status information for true plug-and-play installation.

Fibre organizing is made in the lid, which includes splice organizer with 12 holders, connector holders and fibre in/out ports.

Features

- Docsis 3.1 ready: 204/1218 MHz
- GaN HEMT and GaAs pHEMT technology in use
- Remote power supply with PFC
- Optional 3rd output port
- Optimised fibre and splice organizer in the lid
- Efficient surge and ESD protection
- FP, DFB and CWDM upstream laser options
- Integrated performance monitoring
- Integrated microcontroller enabling true plug-and-play installation:
 - OLC function with temperature compensation
 - Optical input power measurement and local alarm with led
 - RF power measurement for both outputs and local alarm with led
 - Optical transmitter laser current measurement
 - Supply voltage measurement
 - Temperature measurement
 - All alarms and & measurement values are transmitted to headend

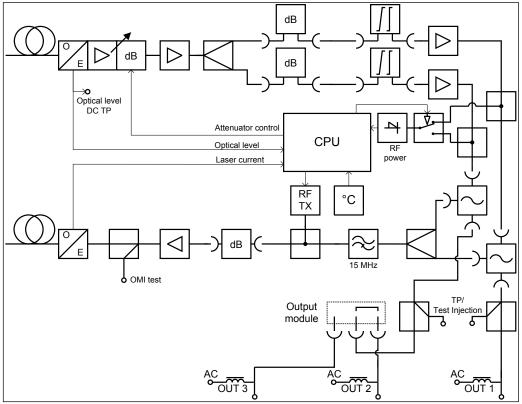
30.12.2014 2(6)


Technical specifications

Parameter	Specification	Note
Downstream signal path		
Light wavelength Optical input power range Frequency range Return loss Gain limited output level OLC control range Gain adjustment Mid-stage slope Flatness Test points Noise current density Umax(112 QAM channels) Umax(138 QAM channels) CTB 41 channels CSO 41 channels XMOD 41 channels	12901600 nm -82 dBm 851218 MHz 18 dB 2 x 117.5 dBµV 12 dB 20 dB 14 dB ±0.4 dB -20 dB 6 pA / √ Hz 111.5 dBµV 108.5 dBµV 116.0 dBµV 116.0 dBµV 112.5 dBµV	1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 11)
Upstream signal path		
Frequency range Return loss Input level OMI TP CINR Filtering, high pass	15204 MHz 18 dB @ f > 15 MHz 70.0 dBµV -10 dB > 48 dB 15 MHz	12) 13) 14) 15)
Data transmitter		
Data carrier frequency Modulation method Channel bandwidth Transmit level Measurements	10.7 MHz FSK, 38400 bps 0.4 MHz 60 dBμV	16) 17)
	< 0.5 dDm	10)
Optical power measurement inaccuracy RF output power measurement inaccuracy Temperature measurement inaccuracy	< 0.5 dBm < 2 dB < 2 °C	18) 19)
General		
Power consumption (65 & 90 / 230 V _{AC}) Supply voltage Maximum current feed through Hum modulation Optical connectors Output connectors Test point connectors Dimensions	36.0 / 38 W 2765 / 4090 / 205255 VAC 7.0 A / port 70 dB SC/APC 8 degrees 5/8" or 3.5/12" (PG11 hole at housin F female 245 x 255 x 145 mm	20) 21) g)
Weight Operating temperature Class of enclosure EMC ESD Surge	4.5 kg -40+55 °C IP 54 EN50083-2 4 kV 6 kV (EN 60728-3)	22)

Notes

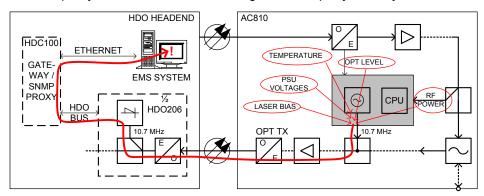
- The OLC limited operation range. Higher optical input powers are possible, but all signal quality parameters are not verified in manufacturing.
- 2) The limiting curve is defined at 80 MHz -1.5 dB / octave.
- 3) This is the nominal output level when OMI is 4.0%. The level is available with -8 dBm optical input power. The used wavelength is 1310 nm.
- 4) OLC in the first mid-stage position can keep the RF level constant.
- 5) JDA type plug-in attenuators in use. Both outputs can be adjusted separately.
- 6) The slope is valid between 85...1218 MHz. TNE020 cable equalizer is in use.
- Typical value. The guaranteed value is ±0.75 dB. Flatness is defined with nominal slope, JDA900 and CXF065 plug-in modules.
- Output TPs are from a directional coupler and has a ±0.75 dB tolerance.
 The output test point can be used as an injection point for return path test signal.
- 9) This is a typical value.
- 10) Typical value according to IEC60728-3-1. Channels have 10 dB cable equivalent slope between 110...1006 MHz and signal level has been defined at 1002 MHz. BER measurement has been done on the worst channel between 110...1006 MHz.
- 11) EN50083-3. Optical input power is –5 dBm and the OMI is 4.0%. The output was 8 dB cable equivalent sloped between 100...862 MHz. All results are typical values in room temperature, which can be used in system calculations. XMOD is measured at 119.25 MHz.
- 12) 8% OMI is reached with the input level of 70.0 dBµV.
- 13) 60 dBuV at TP equals 8% channel OMI.


14)

- 15) High pass filter typically > -1 dB @ 15 MHz, < -20 dB @ 10.7 MHz.
- 16) Typically < -45 dBc @ channel edge.
- 17) This is equivalent to -10 dB offset to upstream signals with the level of 70 dBμV. Transmit level inaccuracy is < 3 dB.</p>
- 18) Between -8...+2 dBm. Defined with 1310 nm.
- Internally measured temperature is typically 20...30 °C higher than ambient temperature, depending on installation.
- 20) 40...90 VAC power supply is purposed only for quasi-square wave form supply voltage.
- 21) At any frequency from 10 to 1218 MHz when the remote current is less than 6 A.12 A is the maximum current, which can be locally injected through all 3 ports together.
- 22) EN61000-4-2, contact discharge to enclosure and RF-ports.

4(6)

Block diagram


Local and remote monitoring

Monitoring principle

AC810 microcontroller continuously measures optical input power, RF level for both outputs, temperature, local PSU voltages and return transmitter laser bias current. If these values are outside allowed window, an alarm is displayed locally with leds and sent to head end using built-in FSK data transmitter operating at 10.7 MHz.

HDO206 return receiver module in the headend monitors the data carrier and extracts node status information from it. This status information, together with signal missing / corrupted data, is presented with HDO206's flags and can be accessed via HDO206 user interface. Alarm history is also stored by HDO206.

HDC100 controller module continuously monitors all HDO modules including HDO206 via HDO bus. It acts as a gateway between HDO bus and Ethernet, enabling alarm data transfer to CATVisor EMS system. HDC100 can also act as a SNMP proxy for HDO modules, allowing use of 3rd party EMS systems.

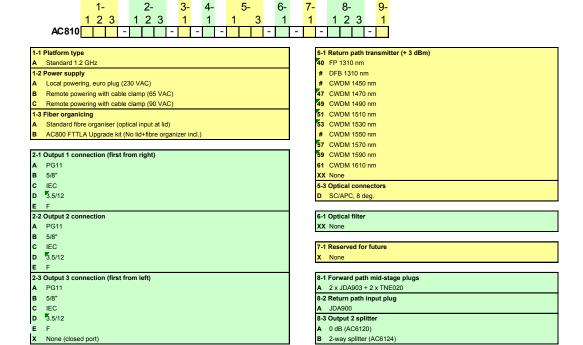
User interface

When AC810 is installed, optical power and RF output power status can be seen from front panel "Optical input" and "RF output" leds. "All green" indicates successful installation.

If needed, the RF output power alarm limits can be set to match measured RF output power with >2 s pushbutton press. Factory default alarm limits can be restored with >5 s pushbutton press. RF output measurement can be disabled with >10 s pushbutton press, which is indicated with dark "RF output" led.

Monitored parameters

Parameter	Value	Local indication	Remote alarm
Optical power	> +1.5 dBm	Blinking red	Optical power critical
	-1.5+1.0 dBm	Yellow	Optical power high
	-8.02.0 dBm	Green	-
	< -8.5 dBm	Red	Optical power low
RF output power (factory setting)	RF 1 & 2 power > ~+6 dBm	Green	-
	RF 1 or 2 power < ~+5 dBm	Red	RF 1/2 low
RF output power (user setting)	RF 1 & 2 within stored value ±3 dB	Green	-
	Otherwise	Red	RF 1/2 low/high
Laser current	> 95 mA	-	Laser current high
	1090 mA	-	-
	< 5 mA	-	Laser current low
Temperature	> 85 °C	-	Temperature critical
	7583 °C	-	Temperature high
	< 73 °C	-	-
Power supply	+12V@11-13 V, +24V@ 22-26 V	-	-
	Otherwise	-	Power supply alarm



30.12.2014

6(6)

Ordering information

AC810 configuration map

9-1 Reserved for future

3-1 Reserved for future None

X None (closed port)

4-1 Diplexer filters 65/85 MHz (2 x CXF065) 85/105 MHz (2 x CXF085) 204/258 MHz (2 x CXF204)

DOC0022130, Rev004